
P-A139 269 HYDRODYNAMIC INTERACTIONS BETWEEN PARTICLES INI/
LOW-RETNOLDS-NUMBER FLOW:..(U) WISCONSIN UNIV-MADISON
MAT HEMATICS RESEARCH CENTER S KIM FEB 84 MRC-TSR-2643

UNCLASSIFIED DAAG29 80 C 0041 F/S 12/I NL



1111 * ' U128 2 5111 I IIa -

1.0 1.

1.125 jflj1 1.4 11116

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

, t

11.. . ... ... ,. -- - . .,=mt. .. .. . . . "

.
, .A



MRC Technical Summary Report #2643

HYDRODYNAMIC INTERACTIONS

BETWEEN PARTICLES IN
LOW-REYNOLDS-NUMBER FLOW:

A MODULAR APPROACH

Sangtae Kim

Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street
Madison, Wisconsin 53705

February 1984 
DTIC

(Received January 5, 1984)

B

aiJ
L Approved for public release

Distribution unlimited

Sponsored by

U. S. Army Research Office

P. 0. Box 12211
Research Triangle Park
North Carolina 27709

ill I - _.' " " ... .... " - , 1 1 . .. [I I . .. ..



qL

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

HYDRODYNAMIC INTERACTIONS BETWEEN PARTICLES

IN LOW-REYNOLDS-NUMBER FLOW:
A MODULAR APPROACH

Sangtae Kim

Technical Summary Report #2643

February 1984

ABSTRACT

°A modular method for calculating hydrodynamic interactions between

particles in low-Reynolds-number flow has been constructed by using multipole

expansion solutions for the reflection field. The approach is made possible

by the use of Faxen laws in relating the multipole moment to the incident

field. The method is illustrated and checked by recalculating known

expressions for the resistance and mobility tensors for two spheres. The

method can be readily generalized to handle three-particle (or n-particle)

interactions as shown in a following paper. New forms of the Faxen laws for

prolate spheroids are given and will form the basis for other papers on

spheroid-spheroid and spheroid-wall hydrodynamic interactions. The important

result is that "first-reflectionw solutions can be readily calculated even in

cases where the ambient velocity field is obtained by a numerical procedure.

These results, as asymptotic (far-field) solutions, furnish a check for more

robust codes. In addition,-they are important on their own since tJqe1 provide

crucial information for the renormalization theory used in suspension

rheology. ...

AMS (MOS) Subject Classifications: 76D05, 35Q10
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SIGNIFICANCE AND EXPLANATION

The calculation of hydrodynamic interactions between particles is needed

for the understandinq and control of many natural and manufacturing processes,

for instance, those involving sedimentation, colloidal stability or suspension

rheology. In these applications the external forces, torques and dipole

moments on the particles are known a priori and the problem is to calculate

the resulting translational and rotational motions. In practice, since the

governing differential equation requires knowledge of these motions for the

boundary condition, one has to solve first for the forces, torques and dipole

moment in a collection of translational and rotational problems and then

invert to obtain the desired motions.

The purpose of this paper is to show that these problems can be solved

directly. Explicit calculations and comparisons with other techniques are

shown for interactions between spheres. The first step towards the

corresponding calculation for spheroids (which arise in the modeling of

suspension of nonspherical particles, e.g. clay/water systems) are also given.
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HYDRODYNAMIC INTERACTIONS BTWEE4 PARTICLES
IN LOW-REYNOLDS-NU1BER FLOW:

A MODULAR APPROACH

Sangtae Kim

1. INTRODUCTION

Hydrodynamic interactions (HI) appear in the analysis of many different problems such

as kinetic theory of polymers, mechanics of suspensions, and the convection of particles in

porous media. In this series of papers, a modular approach to hydrodynamic interactions

between particles of arbitrary shapes in the creeping flow regim (vanishing Reynolds

number) is introduced and applied to problems in each of these areas. The approach will be

illustrated by extending the literature on HI in two directions: interactions involving

axisyumetric particles (prolate spheroids) and interactions involving more than two

particles (three spheres in a uniform stream).

The governing equations for the fluid (viscosity u) velocity, 2 and pressure, p

are taken as

(1.1) -Vp + uV2v . 0,

with boundary conditions at the surface of the particle

v2*- LX Is

where 2 and w are the particle translational and rotational velocities. The geometry

is either that of a number of particles in a fluid of infinite extent as shown in Figure 1,

a single particle in a domain with boundaries as shown in Figure 2, or a combination of the

two.

The approach is modular in the sense that the "I solution is obtained by a two step

procedure -- a calculation of properties intrinsat to each interacting particle, followed

by a method for integrating these modules. The power of the method is due to the fact that

once the first step has been accomplished, the second step follow* as a "back of the

envelope" calculation. As illustrated in later sections, this feature leads to

considerable savings in human computation, particularly for the "mobility problems" for the

calculation of the motion of particles under imposed forces and torques.

Sponsored by the United States Army under Contract No. PrAG29-6o-C-o041.
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Figure 1I Particles in an infinite domain.

Figure 2 -Particles in a bounded domain.
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The method is a generalization of the HI calculation for spheres using the method of

reflections as given in Happel and Brenner (1565), and thus finds similar utility and

limitations. The limitations are imposed by the complexity of the algebraic manipulations

for the higher order contributions. Therefore, accurate solutions to problems involving

strong interactions as defined by Ganatos et al (1980) are precluded. However, the method

gives accurate results for weak interactions and thus one immediate application is its

utility in the testing of more robust numerical codes in this limiting case. In addition,

there are fundamental problems in suspension mechanics where the leading order terms in HI

as determined from the method of reflections plays an important role (for examples on

suspensions of spheres, see Batchelor 1972, Batchelor and Green 1972b, and Hinch 1977).

The analogoiis calculations for particles of arbitrary shape can be accomplished using the

techniques presented here.

The work is presented in four parts, starting with this introductory paper. In part

II, the method is used to calculate the interaction between two prolate spheroids, which in

turn leads to a generalization of the potne-Prager-Yamakawa potential used in the kinetic

theory of polymers. In part III, calculations for the hydrodynamic interaction between

three spheres illustrate the utility of the method for multi-particle systems. The inter-

action between a convected particle and the solid matrix of a porous medium is the subject

of part IV.

The following section is an exposition on the method of reflections, as used in this

series of papers. The multipole expansion solution for the velocity field around the

particle is introduced. A procedure for calculating these multipole moments, for particleq

of arbitrary shape, is shown in Section 3. It is a variation of the procedure for deriving

the "Faxen laws" discussed in earlier works (Faxen 1922, 1927, Brenner 1964b, Batchelor and

Green 1972a, Rallison 1978). The present procedure exploits certain reciprocity relation-

*ships between the Faxen laws and velocity representations in certain associated flow

fields. The method is illustrated by deriving new and possibly more useful forms of the

Fsxen laws for prolate spheroids.

-3-
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In Section 4 and 5, the "module integration" idea is applied to various problems

involving HI between spheres. Most of the results presented in these sections are already

in the literature. However, the calculations, in addition to providing a test of the

method, explain the surprising occurrences of zero coefficients in the expansion for the

mobility tensor. Furthermore, the mobility results are obtained directly, without the

usual steps of taking linear combinations of subsidiary problems.

2. THE METHOD OF REFLECTIONS

The basic solution strategy is similar to the method of reflections as given in Rappel

and Brenner (1965). Their * and ** notation is replaced with a system of subscripts

I and 2 because the latter are more readily generalized for multi-sphere interaction

problems. The original aspect of this work is the development and use of Faxen laws which

greatly facilitate the method.

For two widely separated particles, with centers of reference at X, and 52, the

zero-th order solution for the velocity field is simply the sum of the disturbance

solutions for each particle in isolation, i.e. without hydrodynamic interaction. In the

present notation, these single-particle solutions are denoted 2, and x2. Since the no-

slip boundary conditions on each particle are violated by the velocity field emanating from

the other particle, we correct the solution by adding on two new fields that cancel these

discrepancies. However, any field that helps with the boundary condition at one particle

will upset matters at the other particle, hence we get a sequence of velocity fields

comprising an iterative approximation.

At each reflection, the fields that are created to help satisfy the boundary

conditions are known as reflection fields. The field that violated the boundary condition

(hence forcing the creation of the reflection field) is called the incident field. A

schematic representation of the reflection process is given in Figure 3. The following

convention will be used to label the subscripts. For a reflection at particle B,

(B - 1, 2) the reflected field will be labeled by adding the subscript B to the

subscripts of the incident field. Note that the isolated, single-particle solutions may be

-4-
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considered as reflections from the ambient velocity field v This wiII be called the

zero-th reflection in accord with the literature. The fields reflected from the single-

particle solutions are the first reflections, and those reflected from the n-th reflection

fields are referred to as the (n+l)-th reflection fields.

Given an incident field, we need a method for calculating the reflected field. For

spheres, one can use Lamb's general solution, with Robson's (1955) addition theorems for

transforming the spherical harmonics from a coordinate centered at one sphere to one

centered at the other, as shown by Happel and Brenner (1965). Instead, we present an

alternative approach which can be applied to more general particle shapes. This approach

is based on the Faxen laws, the integral representation for the Stokes solutions, and the

multipole expansion.

An incident field v I(x) which disturbs the boundary condition at a sphere is

countered with a reflection field having the following integral representation (see Nowells

1974):

(2.1) 1 s(O.n) - I(x-x') dS(x').. (2.1) - 8-.- - . . . .

Here a is the stress evaluated at the surface, -' is a vector from the center of

reference to a point on the surface, and is the Green's dyadic or Oseen tensor given by

(2.2) I (X)1 - 6 + -I x x .
ij 1X ij i 3 J

The multipole expansion solution is obtained by expanding the Oseen tensor about the center

of reference. Once the multipole moments, 4 (*2)x*'...A' dS('), are related to v

the solution can be carried out by calculating each reflection to the desired accuracy.

Such relations, known as Faxen laws are available for spheres (Faxen 1922, 1927,

Batchelor and Green 1972) and for ellipsoids (Brenner 1964b, Rallison 1978). Therefore,

the reflection procedure just described, can be applied readily to particles of these

shapes. For nonspherical particles, however, resolution problems can arise in the module-

Integration step. To improve the resolution for nonspherical particles, alternate forms

for the Faxen laws will be derived in the following section.
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3. CONSTRUCTION OF THE FAXEN LAWS

From the previous section, it follows that the reflection fields can be constructed if

the multipole moments can be expressed in terms of the incident field. This section

presents the Faxen laws for the monopole and dipole moments, i.e. the force, torque and

stresslet, on a particle of arbitrary shape moving with a translational velocity _U and an

anqular velocity S. Since the idea for this method came from the strikinq similarity

between the Faxen laws and Stokes solutions for a sphere, the method will be introduced by

applying it to spheres.

The Faxen laws for the force (Faxen 1922), torque (Faxen 1927) and stresslet

(Batchelor and Green 1972a) on a sphere in an ambient field v are compared below with

the velocity fields for a stationary sphere in a uniform stream Kr, vorticity field 1

and rate of strain field g (Hinch 1977):

Force:
2a 2

(3.1a) F = 6wja(1 +- V2 6raU

Solution for uniform stream:
2 I (a-

(3.1b) X QS -t 6WrU.P a 2 =L_ V2)

Torque:

(3.2a) T 414~a 3Vx (7x 2)

Solution for vorticity field:

4 (3.2b) v(x) = *X + 4wua
3
O
t
V S) 8

Stresslet:
220 3 + a '( 1 -t)

(3.3a) 5 = - 1ja (1 + 1 -
V 2 )

- 3 10 2 V V

Solution for rate of strain field:
2 I(x-x20 3a
2  2 = (-'1

(3.3b) X(x) = L'x + P- a3(E .V).( + O ) =- -1

This similarity, as noted by Hinch (1977) is rooted in the Lorentz reciprocal theorem for

Stokes flow. In fact, the reciprocal theorem can be used to generate the Faxen laws as

shown by Brenner (1964b) and Rallison (1978). However, this formal procedure can be

streamlined by using the fundamental solutions for the velocity as shown below.

-7-



*t The single-sphere solution (3.1b) satisfies the boundary condition at r - a:

(3.4) 6TUa
(
1 + !. V , . 6 .

6 SWU Ix-x I -a.&

If we go back to the integral representation for a sphere in an ambient velocity field

z"($)

(3.5) X (IS) - v a (4) dn) ~- dS(Z')

and then operate on both sides with the LHS of (3.4), the result is

2 2a 92a

(3.6) 6wua(1 + 2 )2S1) - 6ta(1 + 2 v (x) - js O dS(x')

In the sphere, y - + iOX(X-X 1 ) so that

a
2

Ewua~t + a2 V2 )v(Zx tiaU

The result is (3.1a), the Faxen law for the force on the sphere. Looking back, we aee that

the procedure is equivalent to Brenner's (1964b) approach since the integral representation

is a special case of the reciprocal theorem.

The tensor identities which follow from the boundary conditions for (3.2b) and (3.3b)

similarly give the Faxen laws for the torque and stresslet when applied to the integral

representation.

The above protocol between sinqle-particle solution and Faxen law is dictated by the

* literature -- single-particle solutions are more readily available, the Faxen laws are

not. However, for new shapes, the efficient procedure is to construct the appropriate

tensor identity, which then leads to both the single-particle solution and Faxen law.

For prolate spheroids, the singularity solutions of Chwang and Wu (1974, 1975) furnish

the identities necessary for the derivation of the Faxen laws. In order to simplify the

algebraic manipulations, their various cases have been combined by using dyadic notation,

into three solutions for a stationary spheroid in a uniform stream, vorticity field and

rate-of-strain field. The conversion to dyadic notation is straightforward for the uniform

stream and vorticity solutions, since the solutions correspond to cases where the spheroid

axis A is either parallel or perpendicular to the relevant vector (the uniform stream or

the pseudo-vector for the vorticity field). For the rate of strain field, the three cases

correspond to axisymmetric straining and hyperbolic straining in planes containing and per-

-8-



pendicular to the spheroid axis. The tensorial form can be obtained either from geometri-

cal arguments, by inspection (Batchelor and Green 1972a) or after rigorous algebraic steps

(Brenner 1974).

The solution of Chwang and Wu for a stationary prolate spheroid (major semiaxis a,

focal length 2c, eccentricity e = c/a, and axis d) are shown below. The constants

are given in Table 1.

Table 1. Constants for the velocity representation for the spheroid

i) Constants derived from Chwang and Wu (1974, 1975)

a,. e e21 -2e + (1+e 
2 ) 

J1Og(l-e),

2 1 -1

a2 2e 212e + (3e
2
-) log(1L-e)

2 I-

222 1+2
=y(1-e

2 )
e  1 - 2  

ot1e )

a 0 2eT Y -2e + log(--.)11e(2e
2 
-3), + 3(- log~l.~j

3~~~ 3-1ei~-

= 
2 1-e)2e+(1+-e

2 ) log(Lte)J(2e(2e
2 
-3) + 3(1e

2
) log(lte) I

,1- =13( -e )-

a = 2e 
2 
(1- 2 )f2e(3-5e2) 3(1-e 

2
) 
2 

log(.It.)} 1

05 = e 
2 

6e-(3-e 
2
) log(.!.t!),-

1-e

ii) Constants used in equations (3.7a-c), (3.8a-c)

a o g + e - -e]o{ e 2 l o g(._+:) , 1

-

+ - (2-e
2
e-2e+(e+e2) io )I
31 - 9-

-9-I



3 3 I-31

-62 f -2e+( 1+e2 ) log(-.,)}

(3.) Iar~ -U 2 C

(3.7a)2f 2)) j1x-2))V2
-c 4e -

(3.7b)

v~x= W x - Y m+ 'S- . )) fc (C2t 2)1
i ijk j k 2 1jm II Ci~

+nd C d a' JC (c 2_&2 H, + (C0242) (1-e) .2) . f, (Zx1) + Ix Mk~mj -C 8e 2  2 ij,k' ik,)j

with fi= - R fi 2 ijk jk

v Wx E X E a~ - (d d(
Sii' IM 5 2 k 3-jk)(Itm LAM

a (d j5k d + d 6 k d m+ 6j k,£d I E k -
4djd.kdld M

+ a( u~6 +6a 6 -6 6 + d 6 6did
4Jkm jm ki c LI j Idk'. +C 'ikl-m

-d 
6~~d, jmdk d, d16 k-td m -

6 J1d kd M + did k d Id m I

jC (C 2 _E 
2 
HI + (c 2 _&2 ) L1-e2 ) .1 Z d

(3.7c) +F tdjkdY jc (C2_E 2 ) 11ijQk'. Z -I
fm c 2 jkij

Terms underlined in (3.7c) make no contributions, but are retained for symmetry reasons.

Note that the distribution of stresslets in (3.7b) and rotleta in (3.7c) are consistent

with the Lnrentz reciprocal theorem. Thus the Faxen laws for the force, torque and stress-

let on a spheroid moving with a translational velocity 11 and rotational velocity jo are:

8W- iU(O d+U( dd)).Jc (0 + (02 & ~(- 2  v
1- 2=_ 4e 2

- 6wuae (a~dd + a 2 (1 - dfl*

(3.Ba) I' 4xujiyd + '(j - td)f C2_2 )Vx V )



+ STOjOd c (c2 -E
2 ){1 + (c2- 2) (_-e2  d (d&

f 2c

32 33
- p2 e fdd + y 1

6 - dd)}ow

(3. Sb)
1 1 i )( d£  1

Sij =85{- (dd -- )(dd -6
i2 5 i 3 ij k(d 3k

- (d d9 + di&td + 6ijdjd + 
6
ik djd- 4d d d d

4j i k i+6ki k I

-- (6 6 +6 6 d d 6 +6 dd +dd d

241ik j1 it jk -iki +i t Ij k
d  

d

- d.6 dk-d 6 d -6 d d -6 d d )}
c 

(c
2

2 c2-&2) (l-e2)
2  e -

i j1 k i jk I ik j t it j k -C 2{4( k1~

(3.8c) - 2wuy *(di jk dt + djE ikdt) (- x I ckd&

These expressions for the Faxen law involve integrals of the ambient velocity field

and its lower order derivatives, whereas the ones developed by Brenner (1964b) and Rallison

(1978) use infinite series involving derivatives of the ambien'. velocity field. If the

ambient velocity field is derived from a numerical method, the latter approach may run into

problems caused by the loss of numerical resolution (finite difference solutions) or

differentiability (finite element solutions). Our integral forms yield the known

*differential forms if one expands X, VXX and e in Taylor series about the spheroid

center.

For the important problem of determing the motion of a force-free and torque-free

spheroid, (3.8a-c) shows that the translational and rotational velocities are:

(3.9a) 2c -c 2 (c 2

ac c
3  -c-

(3.9b)

+ 3 e 2 c (c2-2){1 + (c 2 2 ) 
L(-e2) Id x e%().d d

4c
3 

(2-e
2
) e e

2

From (3.9b), the change in the orientation of the spheroid follows as:

-11-



. 3A

4c3 -c 2

(3.9c) +__,2 (C2_2){1 + (cC 2) (1- V (e-(e)d -

4c
3 

(2-e
2) Be

2  ( e %)ddd)dE

For homogeneous ambient velocity fields (constant velocity gradient) the vorticity and

rate-of-strain tensors can be taken out of the integrals and (3.9b) and (3.9c) reduce to

the Jeffery equations as given by Leal and Hinch (1972). The application of equations

(3.8a-c) and (3.9a,b) in the method of reflections (the module integration step) will be

the subject of parts II d IV.

There are two complications in the generalization of the procedure to particles of

arbitrary shape. Because of the high degree of symmetry possessed by spheres and

spheroids, relatively few solutions (or tensor identities) were required. The spheroid

involved two solutions for the uniform stream, two for the vorticity field and three for

the rate-of-strain respectively. For the general case, three streaming solutions, three

vorticity solutions and five rate-of-strain solutions are required. Secondly, it is

unlikely that analytical expressions will be available for these eleven single-particle

solutions (or identities).

The solution technique of Youngren and Acrivos (1975) is recommended since it will

lead to Paxen laws involving integrals of the ambient velocity field over the surface of

the particle. They solved the integral equation for the velocity field by collocating the

surface of the particle into small subdivisions. The approximants for the velocity in the

uniform stream, vorticity field and rate of strain field cases,

()= 2 - ... s f(x')'I(x-x')ds(x')

8wjS
(3.10a)

with f(x') - u'(x')

-.-L S f(x')-l(x-x')dS(x')
(3. 1ob)

with f(') f-.C(xe)

-12-



v(x) E-x - ij r fx')°I(x-x')dS(x')

(3.10c)

with Z(*) =

where the resistance tensors , _ and 11 depend on the particle shape, lead to

"approximate" Faxen laws for the force, torque and stresslet.

(3.11a) F v s (x')A(x')dS - U'4 A(x')dS - S (w x x').A(x')dS

=- S - -S = I

(3.11b) = v(x')C(x')dS - U- CxdS - s (
~ X x,)*C(x, dS

(3.11c)s = v(lx'l)(x')dS - U-.s (x')dS - s 
(
w x x')'(x')ds

4. MODULE INTEGRATION: HI RETWEFN TWO STATIONARY SPHERES

The method of reflections and the Faxen laws of the previous sections are combined in

this section to calculate the drag on two spheres of radii a and b, with centers at

;S and 2z' held fixed in a uniform stream U. The drag on sphere I as calculated by

standard reflection techniques in Happel and srenner (1965) is:

.. . . ..1 b 1 + 27 A2 + 1 A31 !!
3

6wpa 4 R 16 R2 4 64 4 R3

+ (2. X2 +9 X1 a 4 __6- d
8 ~256 a '54 =- d

(4.1)

+ 2+ R2 1 3) 3

2- R 4P2 2 8 2 R3

4

- + I 12 + 9 Al) Iddf-tU

2 16 4 4

where d = (b 2 - 1 )/I 2 - 1 I, I = h/a and R = IZ 2 -all. The method presented here not only

recovers this result, but solves the parallel and perpendicular cases simultaneously.

The zero-th reflection at each sphere yields the Stokes drag as the leading contribu-

- tion on each sphere:

(0)
(4.2a) = 6"UaU

-13-
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(4.2b) (0) "

The reflected fields are the Stokes disturbance fields:

(4.3a) V1  -6wuaU.(t + a V2I Vx-,

(4.3b) 1 - V2

The contributions from the first reflection at sphere 1, 1) is obtained by applying

the Faxen law (for the force) with X2  as the incident field,

2
(1)a rb 2  2 *S-"2

(1) . a 
2  

1-6w ub 1 +- V2 ) '
6 6 Ssw xx

so that

1) 2
(4.4) 'Fl . -3 bU{1 + )(ab1  261Ua 4 -6 -- -- Ix~x1

(V 4 " 0 since ; is a solution of the Stokes equations). The substitutions for ; and

V2 I reduce equation (4.4) to

3 b 3
+ .1 ) 5-dd)

(4.5)

(2)

The contribution from the second reflection at sphere 1, r
( )  

is obtained by

applying the Faxen law with 212 (which was created by reflecting v, at sphere 2) as

the incident field. Thus the multipole expansion for v12 is required accurate to

~OlR-41:

. ,(,+ (S2) (1) +T (1 ) IijO 2) Q (1) 'i1.kL(-,2)
v12i 2j BWUI 2jk 2jk 8W " 2jkt 161u

and the contribution from the second reflection follows an

-14-



F(2) 2 1 (x-x

6lrUa 2j 6 STU

(4.6) + (S (1) + ( '1) jk 2
2jk T 2jk 811i I25'x

-(1) 11j , kX (1632) + O(R-6

2jkt 161U x l

The moments in (4.6) must be simplified to obtain the final expression. 2 i

obtained by switching a and b in (4.5). After the substitution for I and r2 1, the

first term in (4.6) reduces to

(4.7a) Ab+ (. A 4 _A -(-d + [I L (3 A 1A) Ljdj1
162 a 16 4 4~ 2 2j6-d 4 4 -

In the second tens of (4.6), the dipole moments, and T are needed accurate only to

O(R 2) since they are multiplied by the Stokes dipole which decays as R-2 The Faxen

laws for these moments yield:

2jlc SrU 3 ljk STU

(1) = 20 3 ij,k(2 Z1Sl

where e~j - 2 (V~ + 1~ ij k an 9 (vlkj -vj'k a!e the rate of strain and

vorticity fields of the Stokes solution. The substitutions for a,,( and the Stokes

dipole, simplify these contributions as

(4.7b) I d

and

14.7c) 4 a46d)d

respectively.

The last term in (4.6) mskes a contribution through an O(R-1  term in the quadrupole

* moment Q:

(1) b (1)-3)
9 6 +kl O(R

52 k1 2



The Faxon law for 9 is shown in Kim (1983) along with a recursive formula for the Faxon

law for the n-th multipole moment. However, the leading order term in 9 can be deduced
(1) 21

from its presence in the Stokes solution. After the substitutions for 2 and V the

last contribution simplifies to

4 4

(474 { A3L.6d a 4A
3 a 4d

(4.7d) 16 4 O-d- 4 a4d
R R

The calculation of the contributions from the third and fourth reflection is easier

since only the leading order terms are needed at each reflection (point force

approximation). As the reflections are traced back to the ambient field tr, each

reflection contributes a factor of O(R
1
) from the decay in V(X-X2).

(3) b

S Wpja 4 4 24

(4.8)
2
7 a 7 d a3

1*64 A- 8

_'4)

(4) 2 2
14

(4.9 18 A2 a4 (6-dd) +81 2

The contributions from the zero-th through the fourth reflections given in (4.2),

_(4.5), (4.a-d), (4.10) and (4.11) sun to (4.1). he mentioned earlier, the method

generate@ simultaneously the solutions for streams parallel (d*.J terms) and perpendicu-

lar (M - dd), terms) to the sphere-sphere axis. The method introduces even greater

savinss in the mobility problems of the following section. The parallel and perpendicular

cases will be handled simultaneously, but more importantly, the method solves directly a

specific mobility problem. For example, the motion of torque-free particles (e.g.,

sedimentation) will be solved by imposing the torque-free condition at each reflection.

-16-



The result will be the one of interest, and thus other subsidiary (and unwanted) problems

will be avoided.

5. MODULE INTEGRATION: SEDIMENTATION OF TWO SPHERES

The problem of detersing the motion of two torque-free spheres under the influence of

external forces (e.g., sedimenation) can be considered the inverse of the problem discussed

in the previous section (Brenner 1964a). Our immediate concern here is to show that the

present method gives results that agree with the expressions for the mobility functions as

deduced from the expressions given by Happel and Brenner (1965).

Consider two spheres and the geometry of the previous section. External forces £1

and X2 but no torques are imposed on each sphere. The objective is to express the trans-

lational and rotational velocities U1' 12 and w1 ' w2  in terms of Z1' X2 and 1.

Since this form is not the one given in Happel and Brenner, theirs will be rearranged. We

start with the general relation between the forces, torques, translational velocity and

rotational velocity given by Brenner (1964a):

111 !12 S11 -12 -1

F A AE
-2 -21 -t22 .21 -22 22

(5. 1)

1 2 921 922 P21 9-22 22

The matrix elements are second order tensors and the usual rules for matrix operations are

in effect. For the problem of interest, ZI Z2 ~ so that tand ig2 may be

elimnate frw (5.1) to ive:

A' A '2(6  ) 1  1 [2 2

The symetry in the two-sphere geometry leads to a further simplification -- each

- or 2) can be written in terms of scalar functions for the parallel and

-17-
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perpendicular cases, i.e.

(5.3) * " (a/5A)d 
(

Since the tensors commute, the inverse of the matrix in (5.2) can be written as

(5.4) 
- "

' 
"  

D

with fl = A;1"=2 - A'I"A%2" We now substitute Happel and Brenner's (1965) expressions

(6-3.51) and (6-3.96) for X and Y:

(5.5a) x + ( A2 * 3) a ""
3 5

(S.Sb) 3 + X 2 + A3 9 (2 + .4) a +
122 a 2 R 3 4 8R

4

(5.5c) y , I + 27 + ~L11 16 R2 8 3

3 5

(S.5d Y '(A 
2 7 

X
2 

+ X
3 L__ 

7 
(X

2 
+ 

9 
X
3 
+ A

4
t-+( 1.d) Y12 4 R 4 16 'R 3 64 16 R 5IThe expressions for X22, X211 Y22 and Y1are obtained .by switching a and b in

(5.5a-d). The matrix elements in (5.4) can now be written as

(5.6) A2"*=
- 1 

+ X22(X122 -X21Xi2)-1 + Y22(Y1122 Y21Y12)-1dd)

and

-12(S.7) 1A121 =  _X -12(X 11 X22 - X21 X12 ) -'ld - Y 12 ( Y11¥y22 - Y21 Y12)'I=d
d

so that after some tedious algebra, the translational velocity can be written as:

r =1[11 3 15 _3. + + + 0 +
R2 4 4R 2 4 6a

(5.8) + f[Ih _ (+X,3 a 3+0+ 4L
2 R2 R 3 R5

1 a +-~3 ]1(dd3 01

[I b 3 a3+0 + Z2

-R 5 6wb



The zeros that appear in (5.8) are not accidental, but are consequences of the reflection

process and the properties of the Oseen tensor, as shown in the following direct

computation for

We now obtain (5.8) with the present method by writing 1, as the sum of the

contributions from all reflections as obtained from the Faxen law:

(0
) 
. F (61ua)-I

U
()
= (1 + -' V2)v211xx

.
12 1 

- (1 + S
2 

V
2 )v12

(1)
Since 22  is the Stokes solution, U simplifies as:

~2 (i + A- 
2 )( + 

2 
V2 __!Z_42

(5.9) Z2  . b)f1 + (a V
2

22 (X-x 21

6wu 4 6 "~~ = , 1

= . - 1 (.+3) . 1ld + f-. - + . (X,+3) 31 (-dd)l
6wtpb 2 R 2 R3- 4 R 4 R3R R

(2)
The calculation for I  introduces a novel twist which turns out to be a labor saving

feature in many mobility problems. Since the first reflection already contributed F,

subsequent reflections cannot contain a monopole term. Furthermore, since the spheres are

torque-free, the multipole expansion for any of the higher order reflection fields must

lead off with the stresslet term:

(5. 10) VR 2 S
S8jk 

1  0 WIJ

with
202

jk- 30 Ub
3
(I + V2 )e'ISjk 3 10 1x-J

When such reflection fields are used as incident fields at the next reflection, the leading

[ -19-



order term in the translational velocity at that next reflection will be of O(R
"3

)

smaller than the leading term in the translational velocity contributed by the previous

1(n+
l  

-3 O (R' )

reflection i.e., - O(R The decay in the Stokes dipole contributes a factor

of O(R
"2

) and the streaslet is O(R
1
) smaller than the translational velocity of the

_(2) (3)

preceding reflection. Therefore, the leading order terms in u1  and U are of

O(R
4
) and O(R

7
) respectively.

(2) .3LO.(. ) 7 4" b 3 (e ~ V ) "  L 5~x X 3. a- -
(5.11) U 

) 
" 3dd~-1 ~ 1 WU IKx ZwUa

(3) .20 wb31 I(x-x2 ) -5 -2
(5.12) 1 b (a . OM )O(R

The translational velocities from these contributions sum to (5.8) and an mentioned

earlier, the zero coefficients in the mobility functions are due to the weaker interactions

beyond the first reflection.

The rotational velocity I1 can be related to §Xr, by inserting (5.8) into

expressions (6-3.97) of Happel and Brenner (1965),

p4

16R316 1 R .I (5.13) 35

SdxU 3 b + 27 A2 a + 9 (A2 +27 A3 + A4) a

- 74 32 4 4 32

The result is:

= ~ (E If) + L +

(5.14)

.xr(6ub)fI -2 - + 2-

9%4R R R4 6

Again, the zero coefficients are due to the weaker interactions.

Our method of reflections sums the contributions from each reflection. Again, it

would appear that factors of O(R
3 
) will be introduced. However, the stresslet field is

irrotational so that the interactions are even weaker (at most O(R
-
5)). Therefore,

-20-



(1)
!ei = (VXV )

= dxF2 (6
w ub) 

- 1 -

4R2

(2) 1 2-1 I I SrI) 
7 1(x-x2)-(3 - ( *,2) -VEIS :+

t = - 1x x 2 =2 81rU .. j-

(5. 15b)

= dxZP(6wa)-1[ I+ 5+

---11 --'1)VI-(x-x

(5. Sc)
- dF2 (6wiib)-'°+..

R

I and the rotational velocity follows as

i , F(6!u a)1(-- + ""

1 (5.16)

dxF2 (61ub)'[ j+ L + Q. + +
+ K 4 R 

2  
R4 R6 R

8

In summary, the method reproduces the resistance and mobility functions for spheres

given by Happel and Brenner (1965). Furthermore, the results are consistent with the

recent and more extensive calculations of Jeffrey and Onishi (1983). In the followinq

parts, the method will be applied to HI problems involvin spheroid-spheroid inter-

actions, spheroid-wall interactions and multi-particle (three-sphere) interactions. These

calculations will lay the foundation for future investigations into the effect of multi-

particle HI on the rheology of a suspension of nonspherical particles.

-21-
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NOTATION

a radius of sphere at xI .

a element of the resistance tensor.

b radius of sphere at x2.

B element of the resistance tensor.

c distance from center to foci.

C element of the resistance tensor.

d unit vector denoting orientation of spheroid axis.

e eccentricity of the spheroid.

S rate of strain tensor.

E force exerted on the particle by the fluid.

S Oseen tensor defined by equation (2.2).

S outward normal vector for a surface.

p pressure.

Q quadrupole moment of the surface-force distribution.

R center to center separation between two spheres.

:S stresslet or symmetric part of the stress-dipole.

T torque exerted on the particle by the fluid.

S particle translational velocity.

Svelocity.

x position vector.

)5 point on the surface S(Z').

X scalar function in the resistance tensor, parallel problem.

Y scalar function in the resistance tensor, perpendicular problem.

a constants in the Chwang-Wu singularity solutions.

y constants in the Chwang-Wu singularity solutions.

= identity tensor.

C alternating tensor.

-23-
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A ratio of sphere radii, b/a.

uI viscosity.

S vector denoting position on the spheroid axis.

2 stress tensor.

.a particle angular velocity.

Q vorticity tensor.

Subscripts

1,2 refers to spheres at X1 A

i,j.k,t,m indices used in the Einstein summation convention.

Superscripts

(n) denotes association with the n-th reflection.

- ambient field.

-24-

.........



REFERENCES

Batchelor, G. K., 1972. Sedimentation in a dilute dispersion of spheres. J. Fluid Mech.

U, 245-268.

Batchelor, G. K. and Green, J. T., 1972a. The hydrodynamic interaction of two small

freely-moving spheres in a linear field. J. Fluid Mech. 56, 375-400.

Batchelor, G. K. and Green, J. T., 1972b. The determination of the bulk stress in a

suspension of spherical particles to order c
2
. J. Fluid Mech. 56, 401-427.

Brenner, H., 1
9
64a. The Stokes resistance of an arbitrary particle - II. An extension.

Chem. Eng. Sci. 19, 599-629.

Brenner, H., 1964b. The Stokes resistance of an arbitrary particle - IV. Arbitrary fields

of flow. Chem. Eng. Sci. 9, 703-727.

Brenner, H., 1974. Rheolouy of a dilute suspension of axisymmetric Brownian particles.

Int. J. Multiphase Flow 1, 195-341.

Chwang, A. T. and Wu, T. Y., 1974. Hydromechanics of low-Reynolds-number flow. Part I.

Rotation of axisymmetric prolate bodies. J. Fluid Mech. U, 607-622.

Chwang, A. T. and Wu, T. Y., 1975. Hydromechanics of low-Reynolds-number flow. Part 2.

Singularity method for Stokes flows. J. Fluid Mech. 67, 787-815.

Faxen, H., 1922. Arkiv. Mat. Astron. och. Fys. 7, No. 1.

Faxen, H., 1927. Arkiv. Mat. Astron. och. Fys. 2_, No. 8.

Ganatos, P., Weinhaum, S. and Pfeffer, R., 1980. A strong interaction theory for the

creeping motion of a sphere between plane parallel boundaries. Part 1. Perpendicular

Motion. J. Fluid Mech. 99, 739-753.

Ganatos, P., Weinbaum, S. and Pfeffer, R., 1980. A strong interaction theory for the

creeping motion of a sphere between plane parallel boundaries. Part 2. Parallel

Motion. J. Fluid Mech. U, 755-783.

Happel, J. and Brenner, H., 1965. Low Reynolds number hydrodynamics. Prentice-Hall.

Hinch, E. J., 1977. An averaged-equation approach to particle interactions in a fluid

suspension. J. Fluid Mech. U, 695-720.

4 Hobson, E. W., 1955. The theory of spherical and ellipsoidal harmonics. Chelsea.

-25-

2&iINWW



Howell@, I. D., 1974. Drag due to the motion of a Newtonian fluid through a sparse random

array of small fixed rigid objects. J. Fluid Mech. §A, 449-475.

Jeffrey, D. J. and Onishi. Y., 1983. Calculation of the resistance and mobility functions

for two unequal rigid spheres in low-Reynolda-number flow. Submitted to J. Fluid

Mech.

Kim, S., 1983. Modeling of porous media via renormalization of the Stokes equations.

Ph.D. Thesis. Princeton University.

Leal, L. G. and Hinch, E. J., 1972. The rheology of a suspension of nearly spherical

particles subject to Brownian rotations. J. Fluid Mach. 2, 745-765.

Rallison, J. M., 1978. Note on the Faxen relations for a particle in Stokes flow. J.

Fluid Mech. D8, 529-533.

Youngren, G. K. and Acrivos, A. A., 1975. Stokes flow past a particle of arbitrary

shape: a numerical method of solution. J. Fluid Mech. 69, 377-403.

7t

SK/jvs

-26-



SECURITY CLASSIFICATION OF THIS PAGE (When Desa Entere

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
.REPORT NUMBER 2. O. B. RECIIO TI CATALOG MUMORA

#2643

4. TITLE (and Subtitle) TYPE OF REPORT & PERIO COVERED

Hydrodynamic Interactions Between Particles reporting period
in Low-Reynolds-Number Flow: S PERFORMING ORG. REPORT UMER

A Modular Approach

7. AUTHORoW) s. CONTRACT OR GRANT NUMN.ERe)

Sangtae Kim DAAG29- 80-C-00 41

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA I WORK UNIT NUMBERS

Mathematics Research Center, University of Work Unit Number 2 -
610 Walnut Street Wisconsin Physical Mathematics
Madison, Wisconsin 53706
I. CONTROLLIG OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office February 1984
P.O. Box 12211 Is. NUMBER OF PAGES

Research Triangle Park, North Carolina 27709 26
14. MONITORING AGENCY NAME & ADDRESS(if diforent hom Controling Office) IS. SECURITY CLASS. (of th1s report)

UNCLASSIFIED
ISs. DECL ASSI FI CATION/DOWN GRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of tide Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstrect entered In Block 20, it different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Coutin,,. on reverse aide it neoeeoom end identify by block number)

Faxen law, hydrodynamic interaction, low Reynolds number, spheroids.

20. ABSTRACT (Continue en reveree side It neceosiny end identify by block number)

A modular method for calculating hydrodynamic interactions between parti-
cles in low-Reynolds-number flow has been constructed by using multipole
expansion solutions for the reflection field. The approach is made possible
by the use of Faxen laws in relating the multipole moment to the incident
field. The method is illustrated and checked by recalculating known
expressions for the resistance and mobility tensors for two spheres. The
method can be readily generalized to handle three-particle (or n-particle)
interactions as shown in a following paper. New forms of the Faxen laws for

DD O 1473 EDITION OF I NOV6 IS OSOLETE UNCLASSIFIED (continued)

SECURITY CLASIICATION OF THIS PAGE (Whmen Dole End



ABSTRAcT (continued)

prolate spheroids are given and will form the basis for other papers on
spheroid-spheroid and spheroid-wall hydrodynamic interactions. The important
result is that "first-reflection" solutions can be readily calculated even in
cases where the ambient velocity field is obtained by a numerical procedure.
These results, as asymptotic (far-field) solutions, furnish a check for more
robust codes. In addition, they are important on their own since they provide
crucial information for the renormalization theory used in suspension rheology.

-77i


